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The magnetic dipole solutions of Sikivie and Weiss are considered with the 
addition of a magnetic source and the validity of the observation that for large 
source strengths the energy of such solutions is lower than the energy of corre- 
sponding Coulomb solutions is examined. It is found that the presence of electric 
and magnetic sources leads to dipole solutions and that the introduction of a 
magnetic source does not alter the relationship between their energy and the 
energy of corresponding Coulomb solutions, 

1. I N T R O D U C T I O N  

In te res t  in c lass ical  gauge  theor ies  has inc reased  in recent  years .  In  
this  regard ,  M a n d u l a  (1977) first po in t ed  out  a pecu l i a r  fea ture  o f  c lass ical  
Y a n g - M i l l s  fields in the  p resence  o f  ex te rna l  sources  by  showing  tha t  the  
C o u l o m b  field p r o d u c e d  by  the externa l  sources  is uns tab le  i f  the  s t rength  
o f  the  sources  exceeds  a cer ta in  cri t ical  value.  Magg  (1978), by  cons ide r ing  
the ex te rna l  sources  as s tat ic  and  spher ica l ly  symmetr ic ,  d i scussed  the 
s tabi l i ty  p r o b l e m  to show tha t  the  C o u l o m b  so lu t ion  o f  the  c lass ical  Y a n g -  
Mil ls  equa t ions  with ex te rna l  sources  is uns tab le  for  sufficiently s t rong 
coup l ing  cons tant .  Wi th  an  ex t ended  charge  all spher ica l ly  symmet r i c  sol- 
u t ions  with t i m e - i n d e p e n d e n t  fields have also been  f o u n d  (Ma theu t i s ch  et 

al., 1982) for  the  c lass ica l  Y a n g - M i l l s  equa t ion  in which  the energy and  
charge  are r educed  c o m p a r e d  to the C o u l o m b  solut ions.  A signif icant  
con t r i bu t ion  to such s tudies  was m a d e  by  Sikivie and  Weiss  (1978), who 
p re sen ted  two new classes o f  so lu t ions  to  the  Y a n g - M i l l s  field equa t ions  
in the  p resence  o f  static,  loca l ized ,  but  e x t e n d e d  externa l  sources.  However ,  
the  sources  were pu re ly  e lect r ic  ones.  In  our  ear l ie r  s tudies  Joshi  et  al. 

(1985) and  K u m a r  et  al. (1987) ex t ended  the inves t iga t ions  o f  Sikivie and  
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Weiss by including magnetic sources and obtained classical solutions for 
SU(2) gauge theory with both electric and magnetic sources. The studies 
were further extended to investigate the classical solution of gauge theories 
with external electric and magnetic sources for the gauge group SU(3) 
(Prasad and Joshi, 1989a, b). 

In the present paper we investigate the long-range behavior of SU(2) 
and SU(3) gauge fields with extended electric and magnetic sources. The 
magnetic sources chosen here are not of topological origin, but are similar 
to that introduced by Brandt and Neri (1978) and these sources, in order 
to avoid the string variables, have necessitated the use of a new non-Abelian 
field tensor (Joshi et  al., 1985; Kumar et aL, 1987; Prasad and Joshi, 1989a, b; 
Brandt and Neri, 1978; Benjwal and Joshi, 1987). This paper is divided 
into seven sections. In Section 2, a new non-Abelian field tensor (Benjwal 
and Joshi, 1987) to describe the electric and magnetic sources is introduced 
and the field equations and conservation laws are obtained. In Section 3, 
a description of the extended static electric and magnetic sources in relation 
to the gauge groups SU(2) and SU(3) is given and in Section 4, cylindrical 
symmetry is introduced for the fields A~ and B~ and the Coulomb solutions 
for the extended charge distributions are obtained. Section 5 is devoted to 
the explanation of the long-range behavior of the dipole solutions for both 
SU(2) and SU(3) gauge groups, and in Section 6, the energy of such 
solutions is obtained and compared to the energy of the corresponding 
Coulomb solutions. Concluding remarks are given in Section 7. 

2. FIELD EQUATIONS 

We consider nontopological electric and magnetic sources and intro- 
duce (Benjwal and Joshi, 1987) the following non-Abelian field tensor to 
describe them: 

F~a = O~A~ - a ~A~a + ejrabc--b.a~.a~--c _ !~2~,~p~,~p~a~ _ ~,~P~, + g f ~ b C B P b B ~  ) 

(1) 
a a 

where A~ and By are two non-Abelian potentials, e and g are the corre- 
sponding gauge coupling parameters, fob~ are the structure constants of the 

a gauge group, and 8~p~ is an antisymmetric tensor. The potentials A~ and 
a B~ obey the gauge transformations 

a a - - 1  1 A~= UA~U - - ( O ~ U )  U ~ (2a) 
e 

a a -1 1 U 1 B ~ = U B ~ U  - (O~U)  (2b) 
g 
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where 

U = exp[- iAa(x)  T a] (3) 

in which Aa(x) with x = (x, t) are the three independent real functions of 
space-time, and T represents the group generators of the gauge group 
obeying 

[T a, T b] =/fab~ re  (4) 

The field tensor (1) transforms as 

F.~ --> UF,~U -~ (5) 

The Lagrangian density for the system may be written as 
1 a la, v a  .a  p,a a boa L= -gF~..F +j~A + k~B (6) 

�9 a a in which j~. and k .  are, respectively, the electric and magnetic soucre 
densities obeying 

j ~  -) u j ~ a u  -1 (7a) 

k ~ --> U k ~ a U  -1 (7b) 

The Lagrangian density is invariant under the transformations (2), (5), and 
(7) and its Euler-Lagrange variations give the following field equations: 

D . F . ~  =j~a (Sa) 

and 

i ~ ~ a  _ k ~ a  D~F = (8b) 

where f ~ a  is the dual of the field tensor (1), 

f p . v a  1 l ~ p o ' a  (9) 

and has the form 
a a a b c  b c 1_ p o'a l~a=O~B~-O~B~,+gf B~B~+2t~p~(O A -O~APa+ef~b~ApbA ~r~) 

(10) 

while 

D. = O. + eA~ ( l la )  
x D'~ =O. +gB.  ( l lb )  

x , o a b c a b  • , ~ a b c r ~ b  with eA~ = ej ~ ,  and gB~ = gj t ~ ,  are the covariant derivatives. 
It may be noted that although the inclusion of the magnetic source 

density has required the field tensor in the form (1), both source densities 
are covariantly conserved, i.e., 

D.j ~ = 0 (12a) 
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and 

t v a  D~k =0 

for which, however, the following relation need be obeyed: 

j a  F ~ , a  ka  F , ~ V a  F ~ x  = O = F ~ x  

where 

and 

j a  - -  a a r a b c - - b  - - c  

Joshi and Prasad 

(12b) 

(13) 

(14a) 

Ooq~ ( x ) -~ --gfabCB~ q~g( X ) (16b) 

These equations imply that the time development of qe(x, t) is given by a 
gauge transformation depending on A~ t), while that of qg(x, t) is given 
by a gauge transformation depending on B~ t). The static sources also 
imply that the Casimir invariants built out of q~(x) and q~(x) are time 
independent, e.g., for the group SU(2), we have the Casimir invariants 

Ce(x) = q~(x)qe(x) (lVa) 

Cg(x) = qg(x)qg(X)' (17b) 

which, on using equations (16a) and (16b), can be seen to be time indepen- 
dent, i.e., 

OoCe = OoCg = 0 (18) 

and 

k a  ~ 0 a 3 ,ko (15b) 

with j g ( x )  = q~(x)  and kg(x) = q~(x) with x = [x, t]. For the static sources 
(15), the gauge covariance of ja and k a [equations (12a) and (12b)] 
leads to 

Ooq~(x) = --efabcAOb qCe(X) (16a) 

and 

k a  a a abc b c F ~ = O ~ B ~ - O ~ B ~ + g f  B~B~ (14b) 

3. THE EXTENDED STATIC SOURCES 

The static electric and magnetic sources may be described by 

- a  0 . a  
J~= 6do (15a) 
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We now consider a system of electric and magnetic sources which have 
no &function singularities, but instead have spherically symmetric charge 
distributions 

qe(r) = qe(x) = C exp( -c r )  (19a) 

qg(r) = qg(X) = D e x p ( - d r )  (19b) 

for r = Ix I ~ oo, where C and D are constants and c and d are positive 
quantities. Since equations (19a) and (19b) imply that the electric and 
magnetic charge distributions have infinite extensions, the total electric and 
magnetic charges are given by 

Qe = 4~rr:q,(r) dr (20a) 

fo~ Qg = 4~rr2q~(r) dr (20b) 

The total charge (20) may, however, be looked upon as the sum of  the 
charge between the origin and a certain radius ro and the charge between 
ro and oc. If  the fractions of  total electric and magnetic charges outside the 
radius ro are Pe(r) and Pg(r), respectively, we may write 

Pe(r)=~ee f T  e~rr2qe(r) dr (21a) 

Pg(r) = 47rr2qg(r) dr (21b) 

The implication of  equations (19a) and (19b) that for r-~oe, q ( r ) ~ 0  also 
suggests from equations (21a) and (21b) that 

O~ dp~(r) 
q~(r)= 4~'r 2 dr (22a) 

Qg dpg(r) (22b) 
qg(r)= 4~rr 2 dr 

We now review equation (18) and examine its implications. The 
equation implies that the static sources which construct t ime-independent 
Casimir invariants are themselves time independent. For the time-indepen- 
dent sources 

Ooq~ = 0 (23a) 

Ooq~ = 0 (23b) 
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equations (16a) and (16b) read 

fabCAbq~ = 0 (24a) 

f a b c n b  c noqg = 0 (24b) 

From equation (24a), it is observed that if qe is considered to be lined up 
in the commuting directions of the gauge group space, i.e., for all x and x', 

[q,(x), qe(x')] = 0 (25a) 

then Ao is also aligned along the commuting directions of the gauge group 
space. Similarly equation (24b) and 

[qg(x), qg(x')] = 0 (25b) 

align Bo the way qg is aligned. Thus, conversely, equations (23a) and (23b) 
suggest that by specifying Ao and Bo, we specify the sources qe and qg, 
respectively. Equation (18) also implies that the source distributions only 
rotate in the gauge group space. Therefore, recalling Zwanziger's (1968) 

generalized charge vector whose two vector components represent the 
electric and magnetic charges, it may be assumed for the gauge group SU(2) 
that the electric charge rotates about the 8 "1 axis and the magnetic charge 
rotates about the 6 a3 axis in the isospin space, such that the general electric 
and magnetic charge distributions are given by 

qT(r) = qe(r)(6 a3 COS 0 q- t~ a2 sin 0) (26a) 

q~(r) = qg(r)(8 al cos 0 '+6 a2 sin 0') (26b) 

where 0 = 2~npe(r) and 0'= 2~rnpg(r). However, the electric and magnetic 
charges may be gauge rotated such that they align themselves along the 6 ~3 
and 6 ~ axes, respectively (Kumar et al., 1987), i.e., 

a Y q~( ) qe(r)6 ~3 (27a) 

qg(r) = qg(r)6 ~ (27b) 

Viewing these equations along with equations (17a) and (17b), we 
observe that the Casimir invariants (17a) and (17b) for the gauge group 
SU(2) remain unchanged if 8~3 and 6~ are locally changed to _ ~ 3  and 
- 8  ~,  respectively. Therefore, in SU(2) a source distribution aligned along 
8 ~ may be locally changed to - ~ ;  (i = 1, 2, 3). 

In the case of gauge group SU(3), since it is of rank 2, it has, contrary 
to SU(2), the following Casimir invariants: 

C~(x) = [q3,(x)]2 + [q8(x)]2 (28a) 

C~(x) =.[q3(x)12 + [q~(x)] 2 (28b) 
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and 

C~(x) = - ~3 [qSe(x)]3 + x/3[q3e(X)]:qSe(X) 

Cg(x) = - ~  [ qSg(x) ]3 +v'3[ q3(x)]2 q8(x) 

(29a) 

(29b) 

(30) q(x) = --IAaqa(x) 

where q(x) stands for both qe(x) and qg(X) and A ~, the generators for the 
gauge group SU(3), are denoted by the Gell-Mann matrices, a = 1, 2 , . . . ,  8; 
only h 3 and A 8 are diagonal. It is easy to observe that the other set of 
Casimir invariants [equations (29a) and (29b)] changes when the changes 
6 ~ 8 ~ - 8  ~8 and t ~ a 3 " - ~ - - t ~  a 3  a r e  made. Therefore, in this case the source 
distributions aligned along 6 ~a' ( a ' =  3, 8) cannot locally be changed into 
- 8  ~'. This is a significant departure from the corresponding case in SU(2). 
However, when C~ = C2 g =0,  equations (28a) and (28b) reduce to their 
SU(2) counterparts [equations (27a) and (27b)] 

C~ = [q3e]2 (31a) 

C1 g = [q312 (31b) 

implying that the electric and magnetic charges may be gauge rotated only 
to the 6 ~3, and it then lies in the SU(2) subalgebra of SU(3). When C~ 
and C2 g are not vanishing, the sources can be written as 

q~(x) = 8~3 q~(x) + 8~8 qS(x) (32a) 

(32b) 

and 

q:(x)  : 8~3q3(x) + ~a8q8(x) 

4. C Y L I N D R I C A L L Y  S Y M M E T R I C  F I E L D S  A N D  
COULOMB S O L U T I O N S  

We now simplify the field equations (8) by imposing cylindrical sym- 
metry for the fields A~ and B~ and assume that both the sources and the 
fields are time independent, i.e., the sources obey equations (23a) and (23b) 
fields 

a OoA~ = 0 (33a) 
a OoB,~ = 0 (33b) 

Then, we may write from the field tensors (1) and (10) that 

F ~ = -OiA ~ + e(A ~ • Ai) ~ - e i j k [ ( O j B  k - -  OkBj) d- g(Bj x Bk)] a (34a) 
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and 

~ola = _oiBOa + g ( B  o x Bi)  ~ - e i j k [ ( O j A  k - -  OkAj) -b e(A~ x Ak)] a (34b) 

Consequently, the field equations (8a) and (8b) acquire the following forms 
under the conditions (33a) and (33b): 

DiF ~ = -O~OiA ~ + 2e(O~A ~ x Ai)  a + e ( A  ~ x O,A~) ~ + e2[A i x (A ~ x A~)] a 

+ eukg[(O~B j X Bk)  a + (B; x oiBk) a ] = q~(x)  (35a) 

D f  "~ = -OfOiB ~ + 2g(OgB ~ x Bi)  ~ + g(  B ~ x O~B~) ~ + g2[ B~ x (B ~ x B~)] a 

-I- eijke[ (OiA j X A k) + (A; x oiAk) ] a = --q~(x) (35b) 

DoF ~ = e{ Ao x [ -O;A ~ + e( A ~ x A;)]} a (36a) 

D6E :~ = g{ Bo x [-OJB~ + g(  B ~ • B J)]} a (36b) 

Using equations (24a) and (24b), the first terms in equations (36a) and 
(36b) may be seen to vanish, leaving 

Do F~ = e2[A0 x (A ~ x AJ)] a (37a) 

and 

D~ff "~ = g2[B o x (B ~ x B;)] ~ (37b) 

respectively. The field equations (8a) and (8b) with static sources also lead 
to the relations 

DoF  ~ = D y  ~ = RHS of (37a) (38a) 

D'oF ~ = D I F  ua = RHS of (37b) (38b) 

We now impose cylindrical symmetry on the fields and first consider the 
case of the gauge group SU(2),  for which we assume that the field A ,  has 
cylindrical symmetry around the 3 axis and B~ has it around the 1 axis. In 
view of  equations (24a) and (24b), similar directions are set for the electric 
and magnetic sources as well. Following these assumptions, we may make 
the ansatz (Sikivie and Weiss, 1978) 

Ao = Cpe(p,  X3), Ai = Ei3k x---k A(p ,  x3) (39a) 
P 

and 

where 

Bo = -C~g(p', x~), B~ = --e,~k~, B(p ' ,  x~) (39b) 

p = (x~+x~)  l/e, p '=  (x;2+x'32) 1/2 (39c) 
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Consequently, 

OiA i = O, OiB i = 0 (40a) 

and 

A i O i A  0 -= O, BiOiB o = 0 (40b) 

It may be noted that the minus sign in equation (39b) is due to the minus 
sign in the field equation (8b). This sign in fact implies that the cylindrical 
symmetry for the magnetic source is around the negative 1 axis. 

Using equations (39) and (40), we can write equations (35) as 

--V2~)e + eZA x ((~e X A) = q3e(X) (41a) 

-V2~bg + g2B x (~bg x B) = qlg(X) (41b) 

We may observe from equation (39a) that ~be is directed along the 3 axis 
in the isospin space, while A3 is vanishing, and from (39b), that ~bg is 
directed along the 1 axis with B1 vanishing. Thus, from equations (40a) 
and (41a), we have for A1 and A2 

--~72~3e'4- e2~)3e[(A1)2"} - (A2)  2] = qa(x) (42a) 

[ 7 2 - 1 +  (e&3~)Z]Al,2 = 0 (42b) 

q b ~ a 2 a 3  = ~b3eAiA3 = 0 (43a) 

yEA3 --~12 A 3 = 0 (43b) 
P 

Similarly, from (40b) and (41b), we have for B E and B3 

-V2~b 1 + g2~bl[(B2) 2 + (B3) 2] = q~(x') (44a) 

[V2-~,2 + (g&:)2] B2,3 = 0 (44b) 

6 ~ B2B1 = r ~ B3B , = 0 (45a) 

VZB1 - ~ B1 = 0 (45b) 
P 

In equation (42a), A~ and A2 are interchangeable and so are Be and B 3 in 
equation (44a). Therefore, for simplicity we may assume that A2 = 0 = B2. 
Moreover, equations (43b) and (45b) demand that in order to observe the 
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boundary conditions A3 -> 0, B 1 --> 0 at infinity both A3 and B1 should vanish. 
We then have only the following equations for (42)-(45): 

-V2~b3e + e2~b3e(A1) 2 = q~(x) (46a) 

~ ' 2 A 1  --~12 A1 + e2(q~3e)2A1 = 0 ( 4 6 b )  

P 

and 
2 1 2 1 2 -V  chg+g ~bg(B3) = q~(x') (47a) 

V2B3 _1_~ B3 + g2(~b]g)ZB3 = 0 (47b) 
P 

It is therefore observed that for the static time-independent electric and 
magnetic sources, the field equations (8a) and (8b) have assumed the forms 
(46) and (47) under the imposition of cylindrical symmetry. It may be noted 
that in these equations when A1 = 0 = B3 they reduce to the simple forms 

- -  V 2 ( ~ 3  e = q3e(X ) (48a) 

2 1 - V  thg = q~g(x') (48b) 

and the corresponding solutions are the Coulomb ones. 
For the gauge group SU(3), the field equations are again (35)-(38), 

except that the structure constants in the cross products are those of SU(3). 
The ansatz corresponding to equations (39a)-(39c) in this case is 

Ao = fbe(p, Xt), Ai = eiO ~ a(p, xz) (49a) 
P 

Bo = -qbg(p', Xl), B, = -eiox-~ 'j, B(p', x~) (49b) 
P 

where 
- -  ~ 2 ~  ~ 2 ~ 1 / 2  pt t2 t2 1/2  P-(* i~-*s~  , =(x i  + x j )  (49c) 

l can take values 3 and 8, while i, j have values 1, 2, 4, 5, 6, and 7. ~be, ~bg, 
A, and B are now 

= -~(4~ ca3 + 4~sea 8) (50a) ~ e  1- 3 

qSg = -1i(~b3A3 + ~b8A 8) (50b) 

a = - l i  • akAk (51a) 
k =  1,2,4,5,6,7 

B = -�89 E BkAk (51b) 
k =  1,2,4,5,6,7 
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Now, from the discussion below equation (30), we may recall that no 
group transformation can change +(5.8 to _(5~8; however, (5 "8 can be changed 
to (Sikivie and Weiss, 1978) 

1 -aS 

i=l  
(52a) 

with 

[ail 2 = 1 (52b) 
i 

which in turn lead to the following transformations for 6"8: 

6 "8 ~ 6 ~8 (53a) 

6-8~ �89 6,,3 
- -  ( 5 3 b )  

6a8 .~ 1(5a8 V/3 a3 -3 - -~-  (5 (53c) 

Corresponding to these transformations, the three components of the source 
(-0*(x)@(x)6 ~s) produced by a ~ in the triplet representation are given by 

~b. 0 , q~ = - 6  a8 (54a) 

0=~b ' qI3= 2 2 

~b = ~b q,3, = - - + - -  (54c) 
' 2 2 

Similarly, the three components of the source ( -$*(x)~(x)6  "3) in the triplet 
representation are 

6a3, 6 a3 ~ 6a8 
- - - •  ( 5 5 )  

2 2 

Using equation (49)-(51) in the field equations (35)-(38) for the source 
components (54) and (55), we obtain the following set of equations for the 
three cases. 
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Case L All the A k and Bk vanish except A1, A2 and B1, B2 : 

- -  V 2 ~ 5 3  e --~ eZ[(A1) 2 + (32) 2] (~3 e -~- q3e(x ) (56a) 

- V268e = qS3(x ) (565) 

Iv2-1+ e2( ~b3e)2]A1,2 = 0 (56c) 

- V26 3 + g2[(B~)2 + (B2) 2] 4, 3 = q3(x) (57a) 
2 8 - V  r  qSg(x) (57b) 

[V2- pl--~+ g2(r B1,2 = 0 (57c) 

Case II. All Ak and Bk vanish except for A4, A5 and B4, Bs: 

( 3 ~23 ) r ~)Se qae+V/3 q8 (58a) _•2 q ~e+ 68 +e2[(A4)2+(A5)2] 2 - 2 

( ) x/~qe+qe (58b) - v  2 ~ r 1 6 2  3 8 

2 2 

( V 2 - ~  q-e2 (~3e"1'-%//32 r A45=0' (58C) 

and 

-V2(qb3+~23qbSg)+g2[(B4)2"k-(Bs)2]~b3g+X/~(bSg=q3+v/3qSg2 2 (59a) 

- 72( -x/~ 4}32 + ~ 8) = x/3 q32 + qS (59b) 

V 2_ +g2,rg "~ "*'glu 2 ]--,4,5 = 0 (59c) 

Case III. All Ak and Bk vanish, except A6, A7 and B6, B7 : 

-V2 r ~bSe +e2[(A6)2+(A7)2] 2 2 

(38)e 
- v ~  ~ r  + ~  - 2 (60b) 

x/3 q3e + q~ 

( v 2 _ l +  ee dp 3e -X/3 r S)A6 7 = 0 
p 2 " 

(60c) 
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and 

_V2(t~3 /~ (~8)+g2[(B6)2+(B7)2] q~3g--X'~2 r (61a) 

V2 ~/3~ +d)g ~,/3qg+q~ (61b) 
2 

V 2 +g 2ga3-v~cbg B6,7 = (61c) 
2 

If  we set A -- 0 and B = 0 in each of the above three cases, they all become 
similar and the corresponding solutions are the Coulomb ones. 

5. THE DIPOLE SOLUTIONS AND THE 
L O N G - R A N G E  BEHAVIOR 

The Coulomb solutions, as mentioned above, are obtained by avoiding 
the nonlinear terms in the field equations, which has been achieved by 
setting A = 0 and B = 0. However, solutions of the field equations with 
nonlinear terms may also be obtained. Such solutions may be separated 
into two classes, the short-range and the dipole solutions. We obtain and 
discuss them in the following for both SU(2) and SU(3) gauge groups 
using the Sikivie-Weiss (1978) approach. 

For the gauge group SU(2), the field equations are (46) and (47) and 
we assume that for r, r'--> 0 both Al(p, x3) and B3(p', xl) tend to zero and 
far away from the origin A~--> t~ and B3-> fl such that the field equations 
(46) and (47) approach 

1 V2t~ ---- = 0 (62a) p2 oz 

and 

1 
V2/3 -~-7~ 13 = 0 (62b) 

The first condition ensures the integrability of the energy density at the 
origin, while the second condition implies the exponentially fast vanishing 
of both ~be and ~bg. Therefore, the conditions preceding equations (62) on 
A1 and B3 help determine the solutions of the field equations (46) and (47) 
for specific electric and magnetic sources. The specific character of the 
sources may be understood from the following. Let us review equations 
(46a) and (46b). For given A~ which obeys the condition (62a) and that 
preceding it, equation (45b) is solved for ~b 3. Using this 4~3e and the already 
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given Aa, equation (45a) is solved to obtain q3e(X). ThUS, for this specific 
qZe(x), Aa and ~b3e provide the solutions. Similarly, from equations (47a) 
and (47b) B 3 and ~b~ give the solutions for magnetic source distribution 
q~(x) obeying (47a). It therefore appears that equations (46) and (47) do 
not provide solutions for an arbitrary charge distribution, but do for the 
specific electric and magnetic charge distributions obeying (46a) and (47a), 
which themselves depend on (46b) and (47b), respectively. 

In order to realize the conditions imposed on AI and B 3 w e  choose 
particular solutions to equations (52). These solutions must have the proper- 
ties of ensuring the finiteness of the energy at infinity and the localization 
of charge at the origin. The simplest solutions which obey these properties 
are 

sin 0 
a = r2 (63a) 

and 

Therefore, the fields Aa(p, x3) 
conditions have the form 

sin 0' 
/3= r, 2 (63b) 

and B3(p',x~) which obey the requisite 

sin0 [ r ) 
Aa(p, x3)= Ca---~- f~  a, 0 (64a) 

where C is the norm of Aa(p, x3), a is a parameter depicting the spatial 
extension of the charge distribution qe and f(r/a, O) is the shape function 
corresponding to qe :f(r/a, 0) ~ 1 when r ~ ~.  Similarly, the field B3(p', x~) 
has the form 

,,sin0' (r ' )  
B3(p', x~) = C a r,-----T-- f --~,, O' (64b) 

where c', a', and f '  are the norm of B3(p', x'l), the spatial extension of qg, 
and shape function for qg, respectively. Now using (64a) in equation (46b), 
we may obtain 

ecb3 e =-1 F(x, O) (65a) 
a 

where 

[ 1 (V2f 4 af_ t 
F(x, O) = L--]  \ - r a r  

2 a f~ ]  1/2 (65b) 
r 2 tan 0 0-0 ] _1 
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with x = r/a. Similarly, using (64b) in equation (47b), we obtain 

gr = 1 F'(x', 0') 
tl 

where 

F,(x,, O,)= [ _~  (vz f ,__ ~ Of'Or, 

with x'= r'/a'. The total charge is 

where 

2 

r '2 tan 

where 

Q=Qe+Qg 

Qe f q~(x) d3x f 3 2 3 2 2 3 = = d x [ - V  Ceq-e (31) t~e ] 

= (X 2 sin 0 dx dO d(b)e2(A1)2r 

= eC211 

I1 = 2~ sin 3 0 dO -~ f (x, O)F(x, O) 

Similarly, Qg is 

F 
/ 3 2 1 2 2 1 

= j d X [ - - V  ~bgd-g (B3) ~bg] 
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(66a) 

(66b) 

(67) 

(68) 

(69) 

where I~ may be obtained from /1 by substituting 0 "  0', x~x', f - f ' ,  
and F -  F' .  

Now in order to obtain the field strength we observe equations (46a) 
and (47a). From equation (46a) we observe that the electric charge distribu- 
tion q3e(X) takes contributions from the terms -V2r and e2(AO2r and 
similarly the magnetic charge distribution q~g(x) is a sum of  2 1 -V  eg and 
g2(B3)2r The contributions e(A1)2r 3 and g(B3)2r appear as a result of  
the interaction between A1 and r and between B3 and r respectively. 

=gc'2I~ (70) 
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From these contributions we therefore obtain the field strengths as 

E le =0 

E 2~ = er162 = eF(x ,  O)f(x ,  O) - -  

E 3e = --Vr  

E 2 g  = ( - V  x B 3 )  

--3(pl "X')X'-- pl r'3 

r 2 

p,(x"~rf ' - -x ' (p ,  "Vf') 
--  r,  5 r,3 

(71) 

where Pl = c 'a ' l  is the electric dipole moment and E e is the electric field 
due to electric source and E g is the electric field due to the magnetic source. 
The magnetic field strengths may be obtained as 

H l e  = (V x &)  

- 3 ( m l " x ) x - m l r 3 f (  r ,  o )  r3 (72) 

H 2e = 0, H 3e = 0 

H lg _.~ - V ~  1 

H 2g = gr  = gF ' ( x ' ,  O ' ) f ' (x ' ,  0') - -  

H 3g = 0  

: xi 
/2 (73) 

where ml = Ca 3 is the magnetic dipole moment. Combining these equations, 
we can write the total electric and magnetic fields as 

E 3 3 = - V C e  + eCeAl  - (V X B3) (74a) 
H =  1 1 -VqSg + gCgB3 + (V x A~) (74b) 

It may be observed that only the field strengths E 2g and Hle are long 
ranged. The field strengths other than E 2e, E 3~, H lg, and H 2g a r e  vanishing. 
For the electric fields E 3e and E 2e it may be noted that they are produced 
by charge distributions --V2~b3e and e(Al)2c~3e, respectively, and the total 
charge, equation (67) or (42a), shows that if q3 does not change sign, the 
charge distribution due to nonlinear terms will always provide screening. 
The total screening effect thus diminishes the range of electric fields. 
Similarly, the total screening of magnetic source qX(x)  by the charge distribu- 
tions due to the nonlinear terms (gB3)2r makes the magnetic fields short 
ranged. The electric field of E 2g has a resemblance to the long-range behavior 
of an electric dipole field, while the magnetic field Hle resembles the 
long-range behavior of a magnetic dipole. 
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In the case of gauge group SU(3), the field equations are (56)-(61) 
and their solution may be obtained by following an approach similar to 
that for SU(2). However, in SU(3), there are three cases, depending upon 
the vanishing components of Ak and Bk. We obtain in the following the 
solutions to the field equations for these three cases. We assume that the 
components of Ak and Bk appearing in each of the three cases obey 
the conditions (62) and those preceding them. We retain the notation of 
equations (64) for these nonvanishing components in each case. 

Case L In this case, out of all the components of A k and Bk, only A1, 
A2 and B1, B2 are nonvanishing and the corresponding field equations are 
(56) and (57). As in SU(2), A: and B2 may be taken as vanishing and A1 
and B1 obeying (64a) and (64b), respectively. The total charge therefore is 

Q = O~ + Qg (75) 

where 

and 

f d x[ -V (r162 2] Q e ~ 3 " 2 3 8 

= f d3xe2r 2 

= eC211 (76a) 

f d3x 2 8 Qg= [ -V (r162 z] 

= f d3xg2r (B02 = ec ,2-ttl (76b) 

where /1 is given by equation (69) and I~ is the primed integral of 11. 
Further, from the field equations (56), (57) and the discussion below 
equation (70), it is observed that the sources qSe and q~ produce electric 
and magnetic Coulomb fields, while q3e and q3 produce the magnetic and 
electric dipole fields, respectively. The electric field strengths are 

E 3 e  = - - V r  E s~ = -V68 

E 2~ = eO3~A, = eF(x, O)f(x, O) - -  

Elg = - (V x B1) 

A ^ 
l x 3  

r 2 

3(p2"x')x ' -p2r '3r ' '~ p2(x"Vf') - x'(p2- Vf')  
/5 J k a "  Or,] r '3 (77) 
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The magnetic field strengths are 

n 3  g = -V~b 3 ' n 8q = -VqbSg 

H 2g = g~bSgB1 = gF(x ' ,  O')f(x' ,  0') - -  
r r2 

Case IL 
B5 vanish and the field equations are (58), (59). The nonvanishing com- 
ponents A4, A5 or B4, B5 may be identified as forming two members of U 
spin. The field strengths in this case would be associated with SU(2)o. 

Similar to Case I, we may set here A5 = 0 = B5 ; the field equations (58), 
(59) will then contain only A4 and B4, for which we may again assume the 
forms (64a) and (64b), respectively. The total charge is 

Q = Qe + Qg (80) 

H =  3 8 3 2 - - V  ~) g -- V ~) g-{- g~b g( B1) + (V • A~) (79b) 

In this case all the Ak except A4, A5 and all Bk except B4, 

H ~e = (V x A~) 

3(m2" x) - m2r 3 r 
- ~ f ( a '  O) -~ m2(x" Vf ) r  s- x(m2" Vf) (78) 

In these equations P2 = C'a '3  is the electric dipole moment and m2 = Ca3 
is the magnetic dipole moment. It may be noted that E lg has the long-range 
behavior of the magnetic dipole field and H ~e has that of the electric dipole 
field. The other field strengths in equations (77) and (78) are short ranged. 
The reason may be sought in equations (76a) and (76b), which imply that 
the charge distribution generated by the gauge field A~ and 63e as well as 
that by B 1 and $3 exactly cancel the total charges Qe and Qg, respectively. 
The effect of these charge distributions may also be seen with respect to 
field equations (56a) and (57a), where it is easily observed that if q3e(X) 
and q3(x)  do not change sign, the charge distributions screen these sources 
and, contrary to short-range phenomena, the screening is partial. Equations 
(56b) and (57b) tell us that qSe and qSg produce Coulomb fields. Therefore 
we have three kinds of solutions: those giving Coulomb fields; totally 
screened ones, which create short-range fields; and partially screened ones, 
which show a long-range behavior of dipole fields. Since for this case A1, 
A2 and B~, B2 are nonvanishing, they may be seen to form two members 
of I spin (Huang, 1982) and, as such, the above field strengths are associated 
with SU(2 ) I .  The total electric and total magnetic field strengths may be 
written from equations (77) and (78) as 

E =  3 8 - - ~ \ ~ )  e - -  V ~) e + e~b 3e( Al)2 _ (V X B~) ( 7 9 a )  

and 
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where 
_ : { C + 4 ~  8 

+eZ(a4) 2 r  ,8.] d3x 

f e2(A4) 2 ~ b3+V~ 6 8 d3x 
3 2 

= eC211 

where I1 is given by (69). In this case equation (67a) reads 

e(~b3e+V~ 68e) 1 
- •(x, o) 

2 a 

Similarly, 

(81a) 

(65a) 

t" 4, 8 
d3x 

2 
= gC'2I~ (81b) 

where I~ is described in equation (70); and (65b) is to be replaced by 
g(~b3 +,r ,~) 

_ 1 F(x' ,  0') (65b') 
2 a '  

The field equations (58)-(59) (setting A5 = 0 = Bs) then tell us that in this 
1 8 1 8 case the sources ~(qe - ' r  q3) and ~(qg _ ~ q3) produce the Coulomb fields, 

while the electric source 1(q3 + ~/~ qS) and the magnetic source �89 v~ 3qSg) 
get screened and produce magnetic and electric dipole fields, respectively. 
The electric field strengths are 

2 

E 4g = _ ( V  x B4) 

= _ 3 ( p ~ . x ' ) x ' - p / ~ f ( ~  ' ~ p3 (x ' .Vf ' ) -x ' (p .v f ' )  
r '5 J \ a "  0 ] r ,  3 (82) 
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and the magnetic field strengths are 

/_/5. _  g)B4 
2 

) : C '  -~,,0' f ~ , 0  r, 3 

H 4e = ( I~  • A 4 )  

3(m3" x) - mar 3 r - ~- f ( a '  0 ) +  m3(x-Vf)-x(m3.Vf)r3 (83) 

w h e r e  P3 = Ca(B-l-a) i s  the electric dipole moment and m3 = C'a'(3+8) is 
the magnetic dipole moment. The fields E 4g and H 4e a re  long ranged. 
Combining them, the total electric and magnetic field strengths may be 
written as 

e(C+   8e)A  
-~ ( V  x B4)  (84a) 

2 
3 8 8__ 3 ~bsg) 

/ 

3 8 
g(~g + x/3 ~bg) ~- (V x A4) (84b) 

2 

Case III. Similar to Cases I and II, we may easily obtain the results 
for this case as well. Since the field equations (60)-(61) retain only A6, A7 
and B6, B7 as nonvanishing, they may form the two members of V spin. 
The field strengths in this case would then be associated with SU(2). 

The sources �89 q3e + q8) and �89162 q3 + q~) produce the Coulomb fields, 
while the sources�89 3 - ~  q~) and ( q 3 - 4 3  q~) get screened and produce 
dipole fields. The total charge is 

Q = Qe + Qg (85a) 

where 

Qe = eCE Il (85b) 
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and 

Qg = gc'Z f l 

where /1 and I~ are defined in equations (69) and 
Equations (65a) and 65b) in this case read 

e( 493e -V'-3 c~8~) =1 F(x, O) (65a") 
a 

1 F(x', 0') (65b") g(4~3-'*/3 68g) = a-- 

The electric field strengths are 

~ , e  = -v~-[ ~'e + V~ ~e) 

E8e=-v(q~Se-x/ '32 ~bSe) 
E 7e _ e (~  3e --V/3 ~b8e) 

2 

=CF a,O f ,0 r3 

E 6g = - ( V  x B6) 

- 3 ( p 4 . x ' ) x ' - p 4 r ' 3 r / r '  ) p 4 ( x ' - V f ' ) - x ' ( p 4 - ~ f ' )  
= 7 .I \~-7, O/ r, 3 (86) 

and the magnetic field strengths are 

/_/7~ = g(~_v~ G) 

H 6e = (V X A6) 

3(m4-x)-m4 r3 A / r '~ 
= J a' 0) + m4(x.Vf)  - x ( m 4 - V f )  

r 3 

(85c) 

(70), respectively. 

(87) 
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where p4 = C a ( 3 -  8) is the electric dipole moment and m 4 = C'ct ' (3-  8) is 
the magnetic dipole moment. The fields E 6g  and H 6e show the long-range 
behavior of the electric and magnetic dipole fields. The total electric and 
magnetic field strengths in this case are 

e(~b3 -n /3  q58e) 
-t A 6 - (V • B6) (88a) 

2 

-~ g ( 6 3  X/~ ,#8)  B 6 + ( V •  ( 8 8 b )  
2 

6. ENERGY OF THE SOLUTIONS 

Let us now calculate the energies of both the Coulomb and dipole 
solutions. We calculate them for the gauge group SU(2) and from that infer 
the results for SU(3) as well. For the energy of the Coulomb solutions we 
write 

H c= H~ + H~ (89) 

where H~ is the Coulomb energy contribution due to the electric sources 
and H i is that due to the magnetic sources; they may be written as 

fo: H; = -~- d3x (90a) 

i 2 d3x ' Hi= ~ (90b) 

where Qe and Qg represent the extended electric and magnetic charge 
rc~ t'lr 2 t r distributions. Using d3x = 2r Jo Jo r dr sin 0 dO, r = ax, and r' = a x ,  we 

can write equations (90) in the form 

HgC =--Q2/2 (91a) 
a 

5 H i = I~. (91b) 

where /2 and 11 are integrals depending only on the shape of the charge 
distributions. 
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The energy corresponding to the dipole solutions may be calculated 
from equations (68)-(73) as 

where 

H a = Hde+ H~ (92) 

I 3 1 3 2 H~= d X[~(Vt~e) +e2(qb3eAO2+(VxAl) 2] (93a) 

H ~ = f  3 1 , 2  2 , 2 d x[~(Vt~g) +g  (t~gB3) +(VxB3) 2] (93b) 

which on integrating the last terms and using equations (46b) and (47b), 
respectively, may be written as 

d f 3 1 3 2 2 3 2 H e =  d X[~(V4~e) +e  (4~eA1) ] (94a) 

d f 3 1 1 2 2 1 2 Hg= d x[~(V~g) +g  (~gB3) ] (94b) 

Now, looking at the energy (94a) and (94b) along with equations (64)-(67), 
we can show the dependence of the energy of the dipole solutions on the 
shape, the coupling parameters, the total charge, and the extensions a and 
a' of the respective sources. Using these equations, we can write equations 
(94a) and (94b) as 

Hd 1 {I3+ QeI4~ = a \ ~  ~ ]  (95a) 

Ho =--1 +Qg (95b) 
a' kg g I~] 

where 11 is given by equations (69) and 

L\ ~xx ] x 2 t  ~ (96a) 

h = 2~r sin 0 dO ~ F~(x, O)f2(x, O) (96b) 

while I~, I~, and I~ are the primed integrals of I1, I~, and L. 
A comparison of equations (95a) and (91a) shows that while the energy 

of the magnetic dipole solutions (95a) is linear in Qe, the Coulomb energy 
is quadratic in Qe. Similar comparison may be made for the electric dipole 
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solutions (95b) and equation (91b). Now, combining equations (91a) and 
(95a), we obtain the following equation quadratic in (Qee): 

( Qee )2 Il I2 n d -  ( Qee ) I4H~ - Il I3H~ = 0 (97a) 

Similarly, combining equations (91b) and (95b) yields 
2 ! t d (Q~g) IlI2Hg - (Qgg)I'4HCg - I~I~H~ = 0 (97b) 

Solving equations (97), we obtain the values for (Q~e) and (Qgg), 
(Qee) = {I4H~ 2 C 2 2 C d 1 / 2  d +[I4(He)  +4111213H~He] }/2IlI2He (98a) 

t 2  c 2 t 2  ! ! c d 1 / 2  ! ! d (Qgg) ={I'4HC~+[I4 (ng)  +411 I213ngHg] }/2IllzHg (98b) 

Of two values each for (Q~e) and (Q~g), only the positive values are allowed, 
so that the energies (95) remain positive definite. It may also be observed 
that the values of (Qee) and (Qgg) change according to the energies of the 
Coulomb and dipole solutions. Critical values of (Qee) and (Qgg) may 
therefore be obtained from equations (98a) and (98b), respectively, for 

c c d He = Hde and for Hg - Hg,  which give 
1 I: [(12"~2 ]1/2 

( Qee)criticai = ~22 I1--t- [. \-~-~1,] -t- 4/3/2 (99a) 

1 I~ [(I'2"~ 2 ] 
(Qgg)critical-2Ir2 I~ q-[.\I~] +41'31'2 1/2 (99b) 

further, 

if H d < H~, (Qee) > (Q~e)r162 (99c) 

if d r He > He, (Qee) < (Qee)critical (99d) 

and similar results for (Qgg) with respect to Hg and H~. Therefore, it may 
be concluded that if 

[ ( Qe e) + (Qgg)] > [ ( Qee) + ( Qgg) ]critical (100a) 

then 

H a < H r (100b) 

where H a and H c are given by equations (92) and (89), respectively. These 
equations therefore fix a threshold value for the product of charge and 
coupling parameters, above which the energy corresponding to the dipole 
solutions would be lower than the energy corresponding to the Coulomb 
solutions. 

For the gauge group SU(3), similar calculations may be carried out 
for the three cases and it may be concluded here also that for sufficiently 
large electric and magnetic source strengths the energy of the dipole sol- 
utions becomes lower than the energy of the corresponding Coulomb 
solutions. 
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7. DISCUSSION 

Incorporating magnetic sources through a new non-Abelian field tensor 
[equation (1)], we have studied the Sikivie-Weiss magnetic dipole solutions 
for the gauge groups SU(2) and SU(3). The conclusions of course extend 
to higher gauge groups as well. Due to the presence of both electric and 
magnetic sources, we have called them dipole solutions. It has been observed 
that the field tensor (1) allows the incorporation of magnetic sources on 
the lines of  the electric sources, expect that due to the negative sign in the 
corresponding field equation, the cylindrical symmetry is about the opposite 
axes than for the electric sources. The obtained solutions are in fact of three 
kinds: Coulomb, totally screened, and partially screened ones. The partially 
screened solutions alone have been shown to have the long-range behavior 
of dipole fields and their energy has been compared with that of the Coulomb 
fields. The comparison leads us to the conclusion that the results of Sikivie 
and Weiss remain valid even if we introduce magnetic sources in the theory. 
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