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Dipole Solutions in the SU(2) and SU(3) Gauge
Theory with Electric and Magnetic Sources

D. C. Joshi’ and Rakesh Prasad’
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The magnetic dipole sclutions of Sikivie and Weiss are considered with the
addition of a magnetic source and the validity of the observation that for large
source strengths the energy of such solutions is lower than the energy of corre-
sponding Coulomb solutions is examined. It is found that the presence of electric
and magnetic sources leads to dipole solutions and that the introduction of a
magnetic source does not alter the relationship between their energy and the
energy of corresponding Coulomb solutions.

1. INTRODUCTION

Interest in classical gauge theories has increased in recent years. In
this regard, Mandula (1977) first pointed out a peculiar feature of classical
Yang-Mills fields in the presence of external sources by showing that the
Coulomb field produced by the external sources is unstable if the strength
of the sources exceeds a certain critical value. Magg (1978), by considering
the external sources as static and spherically symmetric, discussed the
stability problem to show that the Coulomb solution of the classical Yang-
Mills equations with external sources is unstable for sufficiently strong
coupling constant. With an extended charge all spherically symmetric sol-
utions with time-independent fields have also been found (Matheutisch et
al., 1982) for the classical Yang-Mills equation in which the energy and
charge are reduced compared to the Coulomb solutions. A significant
contribution to such studies was made by Sikivie and Weiss (1978), who
presented two new classes of solutions to the Yang-Mills field equations
in the presence of static, localized, but extended external sources. However,
the sources were purely electric ones. In our earlier studies Joshi et al
(1985) and Kumar et al. (1987) extended the investigations of Sikivie and
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Weiss by including magnetic sources and obtained classical solutions for
SU(2) gauge theory with both electric and magnetic sources. The studies
were further extended to investigate the classical solution of gauge theories
with external electric and magnetic sources for the gauge group SU(3)
(Prasad and Joshi, 1989q,b).

In the present paper we investigate the long-range behavior of SU(2)
and SU(3) gauge fields with extended electric and magnetic sources. The
magnetic sources chosen here are not of topological origin, but are similar
to that introduced by Brandt and Neri (1978) and these sources, in order
to avoid the string variables, have necessitated the use of a new non-Abelion
field tensor (Joshi et al., 1985; Kumar et al., 1987; Prasad and Joshi, 1989a,b;
Brandt and Neri, 1978; Benjwal and Joshi, 1987). This paper is divided
into seven sections. In Section 2, a new non-Abelian field tensor (Benjwal
and Joshi, 1987) to describe the electric and magnetic sources is introduced
and the field equations and conservation laws are obtained. In Section 3,
a description of the extended static electric and magnetic sources in relation
to the gauge groups SU(2) and SU(3) is given and in Section 4, cylindrical
symmetry is introduced for the fields A, and B,, and the Coulomb solutions
for the extended charge distributions are obtained. Section 5 is devoted to
the explanation of the long-range behavior of the dipole solutions for both
SU(2) and SU(3) gauge groups, and in Section 6, the energy of such
solutions is obtained and compared to the energy of the corresponding
Coulomb solutions. Concluding remarks are given in Section 7.

2. FIELD EQUATIONS

We consider nontopological electric and magnetic sources and intro-
duce (Benjwal and Joshi, 1987) the following non-Abelian field tensor to
describe them:

Fi,=3,A%~0,A%+ef " AL AL -15,,,,(" B —3° B + gf " B**B°°)
(1)
where A;, and B} are two non-Abelian potentials, e and g are the corre-
sponding gauge coupling parameters, f “* are the structure constants of the

gauge group, and 8,,,,, is an antisymmetric tensor. The potentials A, and
B¢, obey the gauge transformations

a a1 1 -
AL =UALU™ =G, 0) U (2a)

1
B:=UB. U“—g(auU) U (2b)
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where
U=exp[—iA®(x)T"] (3)
in which A®(x) with x =(x, t) are the three independent real functions of

space-time, and T represents the group generators of the gauge group
obeying

[Ta, Tb] — l:f-abc Tc (4)
The field tensor (1) transforms as
F, — UF}L,,U_1 (5)

The Lagrangian density for the system may be written as
L=—}F; F*+ji A" + kg B* (6)
in which jj; and k; are, respectively, the electric and magnetic soucre
densities obeying
j = Ujeu (7a)
k* > Uk U™! (7b)

The Lagrangian density is invariant under the transformations (2), (5), and
(7) and its Euler-Lagrange variations give the following field equations:

D, Fre = (3a)
and
D, F** =™ (8b)
where F** is the dual of the field tensor (1),
Fr*=18,,,, F*" 9)

and has the form

Fre=3,B2—03,Ba+gf “ BE BS+38,,,,(°A7 — 37A* + of ““A*PA°)

wvpo

(10)

while
D, =3,+eA] (11a)
D} =4,+gB,, (11b)

with eA’ = ef “°A’, and gB); = gf “*B’,, are the covariant derivatives.

It may be noted that although the inclusion of the magnetic source
density has required the field tensor in the form (1), both source densities
are covariantly conserved, i.e.,

D,j*=0 (12a)
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and
DLk™ =0 (12b)
for which, however, the following relation need be obeyed:
Fi, X F*"% =0 = F% x F*** (13)
where
Fit,=6,A5—0,A%+ef AL AL (14a)
and
Fi,=8,Bi—a,B+gf "B, B; (14b)

3. THE EXTENDED STATIC SOURCES

The static electric and magnetic sources may be described by

0

je=28%jo (15a)
and
ke=68%¢ (15b)

with jo(x) = g¢(x) and kg(x) = g5(x) with x =[x, t]. For the static sources
(15), the gauge covariance of j* and k“ [equations (12a) and (12b)]
leads to

doqs(x) = —ef *A%g5(x) (16a)
and
doqa(x) = —gf “*B%q5(x) (16b)

These equations imply that the time development of g.(x, t) is given by a
gauge transformation depending on A°(x, t), while that of q.(x, t) is given
by a gauge transformation depending on B(x, t). The static sources also
imply that the Casimir invariants built out of gz(x) and gg(x) are time
independent, e.g., for the group SU(2), we have the Casimir invariants

C(x) = q.(x)g.(x) (17a)
C8(x) = gy (x)gy(x)’ (17b)

which, on using equations (16a) and (16b), can be seen to be time indepen-
dent, i.e.,

a0(:e=80C|g:=0 (18)



Dipole Solutions in Gauge Theory 743

We now consider a system of electric and magnetic sources which have
no 8-function singularities, but instead have spherically symmetric charge
distributions

g.(r) = q.(x) = C exp(—cr) (19a)
go(r) = gq,(x) = D exp(—dr) (19b)

for r=|x|-co, where C and D are constants and c¢ and d are positive
quantities. Since equations (19a) and (19b) imply that the electric and
magnetic charge distributions have infinite extensions, the total electric and
magnetic charges are given by

Q.= J’w 47r’q,(r) dr (20a)

0

Q= J' dmr’q,(r) dr (20b)
0

The total charge (20) may, however, be looked upon as the sum of the

charge between the origin and a certain radius r, and the charge between

ro and 0. If the fractions of total electric and magnetic charges outside the

radius ry are P.(r) and P,(r), respectively, we may write

P.(r) =QL Jm Amr*q.(r) dr (21a)

Pg(r)=QiJ'oc47rr2qg(r) dr (21b)

The implication of equations (19a) and (19b) that for r—- 0, q(r)—>0 also
suggests from equations (21a) and (21b) that

_ Q. dp.(r)

9e(r)= 47¥*  dr (222)
Q. dp(r)

9s(r) = 47t dr (22b)

We now review equation (18) and examine its implications. The
equation implies that the static sources which construct time-independent
Casimir invariants are themselves time independent. For the time-indepen-
dent sources

doge =0 (23a)
d0gz =0 (23b)
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equations (16a) and (16b) read
f*Aq=0 (24a)
f*Biqi=0 (24b)

From equation (24a), it is observed that if g, is considered to be lined up
in the commuting directions of the gauge group space, i.e., for all x and x/,

[.(x), g.(x)]=0 (25a)

then A, is also aligned along the commuting directions of the gauge group
space. Similarly equation (24b) and

[gg(x), gg(x")]=0 (25b)

align B, the way g, is aligned. Thus, conversely, equations (23a) and (23b)
suggest that by specifying A, and B,, we specify the sources g. and ¢,
respectively. Equation (18) also implies that the source distributions only
rotate in the gauge group space. Therefore, recalling Zwanziger’s (1968)
"generalized charge vector whose two vector components represent the
electric and magnetic charges, it may be assumed for the gauge group SU(2)
that the electric charge rotates about the §°' axis and the magnetic charge
rotates about the 8’ axis in the isospin space, such that the general electric
and magnetic charge distributions are given by

q2(r) = q.(r)(8* cos 8+ 8*sin 0) (26a)
q2(r) =g, (r)(8* cos 6'+ 8% sin 6") (26b)
where ¢ =2mnp,(r) and 0’ =27np,(r). However, the electric and magnetic

charges may be gauge rotated such that they align themselves along the §*°
and 6°' axes, respectively (Kumar et al., 1987), i.e.,

gi(r)=q.(r)8% (27a)
gg(r) =g (r)8* (27b)

Viewing these equations along with equations (17a) and (17b), we
observe that the Casimir invariants (17a) and (17b) for the gauge group
SU(2) remain unchanged if 8*°> and 6°' are locally changed to —8* and
—8°%', respectively. Therefore, in SU(2) a source distribution aligned along
8% may be locally changed to —8% (i=1, 2, 3).

In the case of gauge group SU(3), since it is of rank 2, it has, contrary
to SU(2), the following Casimir invariants:

Ci(x)=[qi(x)P+[gi(x)]? (28a)
Ci(x)=[g3(x)F +1g5(x)] (28b)
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and
Cé(x)——f[q (x)1 +v3[ge(x)Pge(x) (29a)
Ci(x)= \/—[qg(x)]3+\/_[qg(x)il2 g5(x) (29b)
g(x)=—3r"g"(x) (30)

where g(x) stands for both g.(x) and ¢,(x) and A°, the generators for the
gauge group SU(3), are denoted by the Gell-Mann matrices,a=1,2,...,8;
only A* and A® are diagonal. It is easy to observe that the other set of
Casimir invariants [equations (29a) and (29b)] changes when the changes
5% > —5°% and 6> —8“® are made. Therefore, in this case the source
distributions aligned along 8°* (a’=3,8) cannot locally be changed into
—5°, This is a significant departure from the corresponding case in SU(2).
However, when C;=C%=0, equations (28a) and (28b) reduce to their
SU(2) counterparts [equations (27a) and (27b)]

=[qF _ (31a)
Ci=[q;1 (31b)

implying that the electric and magnetic charges may be gauge rotated only
to the 8%, and it then lies in the SU(2) subalgebra of SU(3). When C$
and C% are not vanishing, the sources can be written as

ge(x)=8qo(x) + 8" q¢(x) (322)
and

5(x) = 8 qy(x) + 8 g(x) (32b)

4. CYLINDRICALLY SYMMETRIC FIELDS AND
COULOMB SOLUTIONS

We now simplify the field equations (8) by imposing cylindrical sym-
metry for the fields A, and B, and assume that both the sources and the
fields are time independent, i.e., the sources obey equations (23a) and (23b)
fields

dA, =0 (33a)
3B =0 (33b)

Then, we may write from the field tensors (1) and (10) that
Fo=—3'A% + e(A"x A")* — ;[ (8B —0:B;) + g(B; X By)]* (34a)
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and
FYe = —3'B* + g(B®x B')* — £, [ (8,Ar — 9,A;) + e(A; X A,)]° (34b)

Consequently, the field equations (8a) and (8b) acquire the following forms
under the conditions (33a) and (33b):

DF%% = —3,0'A% +2e(3,A°x A)* + e(A°x 3,A)* + e’ [A' x (A’ x A))]*

+e5g[(a:B’ x BX)" + (B’ x8,B*)"] = g2(x) (35a)
D% = —3,6'B* +2g(3,B°x B')* + g(B°x 3,B")* + g’ B' x (B°x B})]*

+ee[ (3,47 x AF)+ (A x 8,4%)]" = —q2(x) (35b)
Dy FY* = e{Agx[-0'A°+ e(A"x A)]}* (36a)
D{F% = g{Byx [-3'B°+ g(B"x B))]}* (36b)

Using equations (24a) and (24b), the first terms in equations (36a) and
(36b) may be seen to vanish, leaving

DyFY% = e[ A, x (A°x A)]° (37a)
and
D}F% = g’[ By x (B°x B/)]° (37b)
respectively. The field equations (8a) and (8b) with static sources also lead
to the relations
D,F% = D,F% = RHS of (37a) (38a)
D},F% = D! F = RHS of (37b) (38b)

We now impose cylindrical symmetry on the fields and first consider the
case of the gauge group SU(2), for which we assume that the ﬁeld A, has
cylindrical symmetry around the 3 axis and B, has it around the 1 axis. In
view of equations (24a) and (24b), similar d1rect10ns are set for the electric
and magnetic sources as well. Following these assumptions, we may make
the ansatz (Sikivie and Weiss, 1978)

AO = ¢e(p’ .7C3), A - 813k A(P, x3) (393)
and
By=—¢g(p,x1), Bi=— zlkp B(p, 1) (39b)

where
p=(xitx]): o= () (390)
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Consequently,
3:A,=0, 9;B,=0 (40a)
and
Aid:A;=0,  Bi3;By=0 (40b)

It may be noted that the minus sign in equation (39b) is due to the minus
sign in the field equation (8b). This sign in fact implies that the cylindrical
symmetry for the magnetic source is around the negative 1 axis.

Using equations (39) and (40), we can write equations (35) as

V. + e AX (b, x A) = q2(x) (41a)
—V’¢,+8°BX (¢, X B) = qy(x) (41b)

We may observe from equation (39a) that ¢, is directed along the 3 axis
in the isospin space, while Aj is vanishing, and from (39b), that ¢, is
directed along the 1 axis with B, vanishing. Thus, from equations (40a)
and (41a), we have for A, and A,

—V2¢i+e’$i(A)+(A)"]= ¢2(x) (42a)
[Vz—%+(e¢2)2j|A1,2=O (42b)
d3AA;= p2AA;=0 (43a)
V2A3—;)1-2A3 =0 (43b)

Similarly, from (40b) and (41b), we have for B, and B;

~V2 gt 87 [(B2)*+(B3)’] =g (x) (44a)
[Vz—#+(g¢;)2]32,3 =0 (44b)
®.B,B, = ¢.B;B, =0 (45a)

V2B, —# B,=0 (45b)

In equation (42a), A, and A, are interchangeable and so are B, and B; in
equation (44a). Therefore, for simplicity we may assume that A,=0=B,.
Moreover, equations (43b) and (45b) demand that in order to observe the



748 Joshi and Prasad

boundary conditions A;— 0, B, - 0 at infinity both A; and B, should vanish.
We then have only the following equations for (42)-(45):

Vit e’pi(A)’ = qi(x) (46a)
VZAI—%Aﬁ-eZ(d)i)zAI =0 (46b)
and
~Vihgt g dy(Bs) = qy(x) (47a)
V*B, —-plj B+ g2(¢>‘g)2B3 =0 (47b)

It is therefore observed that for the static time-independent electric and
magnetic sources, the field equations (8a) and (8b) have assumed the forms
(46) and (47) under the imposition of cylindrical symmetry. It may be noted
that in these equations when A, = 0= B; they reduce to the simple forms

—Vl=qi(x) (482)
-V’¢.=q;(x) (48b)

and the corresponding solutions are the Coulomb ones.

For the gauge group SU(3), the field equations are again (35)-(38),
except that the structure constants in the cross products are those of SU(3).
The ansatz corresponding to equations (39a)-(39¢) in this case is

X;
A0= ¢e(p, xl)a Ai = Silj;)! A(P, xl) (493')
x!
B():_¢g(p,9 xl)s Bi=_8iljp—)yB(p,! x;) (49b)
where
p=(3+x), p= (x4 ) - (499)

I can take values 3 and 8, while i, j have values 1, 2, 4, 5, 6, and 7. ¢., ¢,,
A, and B are now

b =—3i(dIAs+ PEAY) (50a)
P =—3i(PIA;+ PEA®) (50b)
k=1,2,4,5,6,7
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Now, from the discussion below equation (30), we may recall that no
group transformation can change +6°*to —§“%; however, 6°® can be changed
to (Sikivie and Weiss, 1978)

33 .
8“89—%8“8+§ Y a8 (52a)
i=1
with

Slaf=1 (52b)

which in turn lead to the following transformations for 8%

5% 898 (53a)
3

5% > —%5"8+—‘/2: 8% (53b)
3

5% —%5“8—§ 8 (53c)

Corresponding to these transformations, the three components of the source
(—y"(x)p(x)8°%) produced by a ¢ in the triplet representation are given by

1
y=y| 0], gi =~8* (542)
-0_
o
8% V3
y=¢| 1], qi’1=——£3“3 (54b)
2 2
_0-
[0
. 8a8 \/§ ;
y=yj 0|, q111=_2‘+_2‘5 } (54¢)
1

T
i

Similarly, the three components of the source (—¢'(x)y(x)8%®) in the triplet
representation are
8 V3
_ 6113 ——— 6a8
S (55)
Using equation (49)-(51) in the field equations (35)-(38) for the source
components (54) and (55), we obtain the following set of equations for the
three cases.
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Case I. All the A, and B, vanish except A,, A; and B,, B;:
—V2pi+ e [(A)*+(A)19: = qi(x)
—-V¢i=q3(x)

1
[Vz—;+ e2(¢i)z]Al,2= 0

—V2¢3+g’[(By)* +(B.)* 1y = q3(x)
—V2¢5 = q5(x)

1
[Vz _?"’ gz(d)z)z] B;,=0

Case II. All A, and B, vanish except for A,, A; and B,, Bs:

$itV3:_qitV3ge

2 2
_Vz(_‘/g ¢>i+¢§) _ _Y3qitq:
2 2

(LB | a4

L eivie
(Vz“‘;i'{" 62 _¢—2—i>A4’5 =0

and
bz tV3d, daz V34
2 2

_Vz(_\/§ ¢Z+¢§> _ VBaytay
2 2

1 2+V3 o8
(Vz—?-*‘gz——qbg ;/_qﬁg)B‘,’S:O

Case III. All A, and B vanish except A, A7 and B, B;:
p:-V3¢: 4:—V34.
2 2
_V2<J§ ¢2,+¢2) _Y3g.tqe

2 2

v BEBL) ¢ prm (B

(L) s fag (A

¢:—V3 e

1
VZ__+ 2
( P 2

)A6,7 = 0

(56a)
(56b)

(56¢)

(57a)
(57b)

(57¢)

(58a)

(58b)

(58¢)

(59a)

(59b)

(59¢)

(60a)

(60b)

(60c)
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and

3_ 3 3 8 3 8
Sl G S P PATS e SR L e

2
_Vz<~/§ ¢Z+¢§) _Y3gqita; (61b)
2 2
3 8
(Vz—;13+g2———¢g f‘bg)Bw: (61c)

If we set A=0 and B =0 in each of the above three cases, they all become
similar and the corresponding solutions are the Coulomb ones.

5. THE DIPOLE SOLUTIONS AND THE
LONG-RANGE BEHAVIOR

The Coulomb solutions, as mentioned above, are obtained by avoiding
the nonlinear terms in the field equations, which has been achieved by
setting A=0 and B=0. However, solutions of the field equations with
nonlinear terms may also be obtained. Such solutions may be separated
into two classes, the short-range and the dipole solutions. We obtain and
discuss them in the following for both SU(2) and SU(3) gauge groups
using the Sikivie-Weiss (1978) approach.

For the gauge group SU(2), the field equations are (46) and (47) and
we assume that for r, #’> 0 both A;(p, x;) and B;(p’, x,) tend to zero and
far away from the origin A, > « and B;— 8 such that the field equations
(46) and (47) approach

1
Via——=a=0 (62a)
p
and
> 1
VB——B8=0 (62b)
p

The first condition ensures the integrability of the energy density at the
origin, while the second condition implies the exponentially fast vanishing
of both ¢, and ¢,. Therefore, the conditions preceding equations (62) on
A, and B; help determine the solutions of the field equations (46) and (47)
for specific electric and magnetic sources. The specific character of the
sources may be understood from the following. Let us review equations
(46a) and (46b). For given A, which obeys the condition (62a) and that
preceding it, equation (45b) is solved for ¢>. Using this ¢ and the already
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given A;, equation (45a) is solved to obtain g2(x). Thus, for this specific
q3(x), A, and ¢> provide the solutions. Similarly, from equations (47a)
and (47b) B, and ¢, give the solutions for magnetic source distribution
g;(x) obeying (47a). It therefore appears that equations (46) and (47) do
not provide solutions for an arbitrary charge distribution, but do for the
specific electric and magnetic charge distributions obeying (46a) and (47a),
which themselves depend on (46b) and (47b), respectively.

In order to realize the conditions imposed on A, and B; we choose
particular solutions to equations (62). These solutions must have the proper-
ties of ensuring the finiteness of the energy at infinity and the localization
of charge at the origin. The simplest solutions which obey these properties
are

a=— (63a)

and

sin 6’
B= e (63b)

Therefore, the fields A;(p, x;) and B;(p’, x;) which obey the requisite
conditions have the form

2
r

Ay(p, x3) = Ca 2 "f(;', o) (64a)

where C is the norm of A,(p, x;), a is a parameter depicting the spatial
extension of the charge distribution g, and f(r/a, 8) is the shape function
corresponding to q.: f(r/a, 8)—> 1 when r > 0. Similarly, the field B;(p’, x})
has the form

, , ,sind" (r
B;(p',x1)=C'a Tf(;, 9) (64b)
where ¢’, a’, and f’ are the norm of B;(p’, x1), the spatial extension of g,

and shape function for g,, respectively. Now using (64a) in equation (46b),
we may obtain

eb2=1 F(x,0) (652)
where
(gt 2 ]
F(x,6)—[ f(Vf rar+r2tan089)] (650)
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with x = r/a. Similarly, using (64b) in equation (47b), we obtain

1
go=— F(x,0) (662)
where
49f' 2 af)]”2
F/ I Y — 2 ’ - Y
(x', 6) [ f’( /= roar r’2tan0'60’ (66b)
with x'=r'/a’. The total charge is
Q=0Q.+Q, (67)
where
0= [ @20 ax= [ xt-vigrs eayn
oo T 27
= J J' J (x*sin 8 dx do do)e*(A,)’d>
0 0 0
= eC2[1 (68)
where
T Cdx ,
IL=2x sin” 6 do ?f (x, 0)F(x, 68) (69)
0 0
Similarly, Q, is
0= [ xi-vg+ B0l
= gc”*I} (70)

where I] may be obtained from I, by substituting 6> 0', x>x', f>f",
and F-> F'.

Now in order to obtain the field strength we observe equations (46a)
and (47a). From equation (46a) we observe that the electric charge distribu-
tion g3(x) takes contributions from the terms —V2¢> and e?(A,)’¢> and
similarly the magnetic charge distribution q;(x) is a sum of —V2¢; and
g°(B;)’ ¢ . The contributions e(A,)’¢? and g(B;)*¢}, appear as a result of
the interaction between A, and ¢> and between B; and d:;,, respectively.
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From these contributions we therefore obtain the field strengths as

Ele = 0
Ix 1
E* = eplA, = eF(x, 0)f(x, 0) 25
r

E*=-V¢;
E2g = (_V X B3)

_ =3 X)X - g (X VS =X (p V) (71)

- r/S r13

where p;, = c’a'l is the electric dipole moment and E° is the electric field
due to electric source and E? is the electric field due to the magnetic source.
The magnetic field strengths may be obtained as

H'"=(VxA))

3(my-x)x—m,r* [ r m,(x-Vf)—x(x-V

Smomr (1) mESNCT)
H2e=0, H3e=0
H®=-V¢!
H2g_ lB_ Fr ’ t ’ ? ,§Xi

=gy Bs=gF'(x", 0)f'(x, ') —5 (73)

r
H* =0

where m, = Ca3isthe magnetic dipole moment. Combining these equations,
we can write the total electric and magnetic fields as

E=-Véi+edp: A —(VXB;) (74a)
H=-V¢,+gd.B;+(VXA,)) (74b)

It may be observed that only the field strengths E*¢ and H'¢ are long
ranged. The field strengths other than E*, E*°, H'%, and H are vanishing.
For the electric fields E** and E* it may be noted that they are produced
by charge distributions —V°¢> and e(A,)*¢>, respectively, and the total
charge, equation (67) or (42a), shows that if g> does not change sign, the
charge distribution due to nonlinear terms will always provide screening.
The total screening effect thus diminishes the range of electric fields.
Similarly, the total screening of magnetic source g} (x) by the charge distribu-
tions due to the nonlinear terms (gB3)2¢; makes the magnetic fields short
ranged. The electric field of E* has a resemblance to the long-range behavior
of an electric dipole field, while the magnetic field H'® resembles the
long-range behavior of a magnetic dipole.
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In the case of gauge group SU(3), the field equations are (56)-(61)
and their solution may be obtained by following an approach similar to
that for SU(2). However, in SU(3), there are three cases, depending upon
the vanishing components of A, and B,. We obtain in the following the
solutions to the field equations for these three cases. We assume that the
components of A; and B, appearing in each of the three cases obey
the conditions (62) and those preceding them. We retain the notation of
equations (64) for these nonvanishing components in each case.

Case 1. In this case, out of all the components of A, and By, only A,,
A, and B, B, are nonvanishing and the corresponding field equations are
(56) and (57). As in SU(2), A, and B, may be taken as vanishing and A,
and B, obeying (64a) and (64b), respectively. The total charge therefore is

Q=0.+Q, (75)
where
Q.= | x-v(ar oD+ epia
= I d’x e2¢i(A1)2
=eC?I, (76a)
and

Q,= J d’x[-VH b+ d3) + g ¢35 (B1)*]
= I d>x g2¢§(B1)2= ec’I’ (76b)

where I, is given by equation (69) and I} is the primed integral of I,.
Further, from the field equations (56), (57) and the discussion below
equation (70), it is observed that the sources g and qi, produce electric
and magnetic Coulomb fields, while ¢} and g} produce the magnetic and
electric dipole fields, respectively. The electric field strengths are

E*=-V¢), E*=-V¢!
1x3

r2

E*=e¢p A, =eF(x, 0)f(x, 0)

Elg = _(VXBI)

3( 'X’)X’_ rr3 r , (X,'Vf,) —x' -V r)
__o\k s | 7] f(;,, P ) P - (p.—Vf (17)
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The magnetic field strengths are
Hg=-V¢,, HY=-V¢;

A

ix3

H™ = 4B, = gF(x', 6)/(x', ) —
H'Y=(VxA,)
=3(m2-x)5—m2r3f(;r’ 0) +m2(x-Vf)—3x(m2'Vf)

(78)
r r

In these equations p, = C’a’3 is the electric dipole moment and m, = Ca3
is the magnetic dipole moment. It may be noted that E'¢ has the long-range
behavior of the magnetic dipole field and H'¢ has that of the electric dipole
field. The other field strengths in equations (77) and (78) are short ranged.
The reason may be sought in equations (76a) and (76b), which imply that
the charge distribution generated by the gauge field A, and ¢? as well as
that by B, and ¢‘Z exactly cancel the total charges Q, and Q,, respectively.
The effect of these charge distributions may also be seen with respect to
field equations (56a) and (57a), where it is easily observed that if g2(x)
and q’;’(x) do not change sign, the charge distributions screen these sources
and, contrary to short-range phenomena, the screening is partial. Equations
(56b) and (57b) tell us that g% and g% produce Coulomb fields. Therefore
we have three kinds of solutions: those giving Coulomb fields; totally
screened ones, which create short-range fields; and partially screened ones,
which show a long-range behavior of dipole fields. Since for this case A,
A, and B;, B, are nonvanishing, they may be seen to form two members
of I spin (Huang, 1982) and, as such, the above field strengths are associated
with SU(2),. The total electric and total magnetic field strengths may be
written from equations (77) and (78) as

E=-V¢.-Voi+epi(A)’—(VxB,) (79a)
and
H=-V¢,-Voi+gpi(B,)+(VXA,) (79b)

Case II. In this case all the A, except A,, As and all B, except B,,
Bs vanish and the field equations are (58), (59). The nonvanishing com-
ponents A,, As or B,, Bs may be identified as forming two members of U
spin. The field strengths in this case would be associated with SU(2) .

Similar to Case I, we may set here As = 0= Bs; the field equations (58),
(59) will then contain only A, and B,, for which we may again assume the
forms (64a) and (64b), respectively. The total charge is

Q=0Q.+Q; (80)
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where

2 2
3+ 8
+e2(A4)2——~¢e ;/§¢e] d*x

Q. =j [_Vz<¢i+¢§ qsi) _W(qsg_@ ¢2>

:J’ 82(A4)2 ¢e+;/§¢’e d3x

=eC?I, (81a)
where I, is given by (69). In this case equation (67a) reads

e(di+v3 90 _1

— F(x, 8) (65a)
2 a
Similarly,
3 + 8
0= [ gipyr 22 s
=gC"I} (81b)

where I} is described in equation (70); and (65b) is to be replaced by

3 8
8o tV3 ¢5) =—1—, F(x',0) (65b")
2 a

The field equations (58)-(59) (setting As=0= Bs) then tell us that in this
case the sources 3(q% —v/3 ¢°) and 3(g; —v/3 q,) produce the Coulomb fields,
while the electric source 3(g2++/3 ¢5) and the magnetic source 3(g2 ++/3 343)
get screened and produce magnetic and electric dipole fields, respectively.
The electric field strengths are

3_ 3
E* = __v(M)

2
Efe— _V<¢§+¢§ ¢2)
2
E5=M
2
= CF(-r-, e)f(i, e) B+8x
a a r
E*=—(VxB,)

rrS rr3 (82)

__3(psx)x —psr’sf(‘rl_’” 0) _B(X V) -x(p-VS)
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and the magnetic field strengths are

H3g — _7<M)

2
2
st _861HVI LB,
2
o N NGB x4
—CF;(a,,g)f(a,,6> rr3
H4e=(VXA4)
___3(m3'xr)5_m3"3f<_;_’ 9> +m3(x-Vf) ;x(mny) (83)

where p;= Ca(§+§) is the electric dipole moment and m; = C’a’(§+§) is
the magnetic dipole moment. The fields E** and H* are long ranged.
Combining them, the total electric and magnetic field strengths may be
written as

3 8 8 __ 3
B _V<¢e+f3 ¢e> _V<¢e ﬁqbe)

2 2
3 8
+——e(¢e+‘f¢e)‘4“—(v X B,) (84a)
H=_V(¢2+¢§ ¢>§) _V(qsi—x/? ¢2)
2 2
3 8
+ 88TV Pyl (¢g+2‘/§ $0) L (vx Al (84b)

Case I11. Similar to Cases I and II, we may ecasily obtain the results
for this case as well. Since the field equations (60)-(61) retain only A4, A,
and Bg, B, as nonvanishing, they may form the two members of V spin.
The field strengths in this case would then be associated with SU(2).

The sources 3(v3 g2+ q%) and 3(v3 g3 + g}) produce the Coulomb fields,
while the sources 3(q3—+3 q¢) and (g; —v3 q;) get screened and produce
dipole fields. The total charge is

Q = Qe + Qg (852.)
where
Q.=eC’I, (85b)
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and

Q, =gc’I, (85¢)

where I, and I; are defined in equations (69) and (70), respectively.
Equations (65a) and 65b) in this case read

(92 =V3 %) == F(x,0) (652")
g(e;—V3 ¢§)=$F(x’, 6) (65b")

The electric field strengths are
3+ 3
E3€ = _V<M9_e)

2
8 _ 8
E83=_V(¢e \/§¢e>
2
2
r r \(3-8)x6
= F —_ —_ _—
er(30)r(z0) =
E® = —(VxBg)
S (7 ) bSIAOS)
and the magnetic field strengths are
2
e —v(#5%1)
2

H'*=g(¢3~V3 &})
R oV (3-8)xé6
—CF(a,,e)f(a,,o)———3

r
H® =(VxAy)
_3(m,-x) ~m,r’ f(_r, 0) V) ~x(my - )

(87)

r a r
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where p,= Ca(§ —§) is the electric dipole moment and m, = C’a'(§——§) is
the magnetic dipole moment. The fields E® and H® show the long-range
behavior of the electric and magnetic dipole fields. The total electric and
magnetic field strengths in this case are
34 8 8_ /3 &8
E____V(dJe ;/§¢e>_v(¢>e ;/_fbe)

L e(93-v3 8

2 A;—(VxBg) (88a)
He _V(¢é+ﬁ ¢2> _V(qsi—ﬁ ¢§)
2 2
+"“>'(&:2‘fﬂ52 B+ (VxBy) (88b)

6. ENERGY OF THE SOLUTIONS

Let us now calculate the energies of both the Coulomb and dipole
solutions. We calculate them for the gauge group SU(2) and from that infer
the results for SU(3) as well. For the energy of the Coulomb solutions we
write

H°=H{+H} (89)

where H is the Coulomb energy contribution due to the electric sources
and Hj is that due to the magnetic sources; they may be written as

2
H§=J%d3x (90a)
2
HS= J e gy (90b)
¥

where Q. and @, represent the extended electric and magnetic charge
distributions. Using d’x=2x [, |7 r* drsin 0d6, r=ax, and r'=a'x’, we
can write equations (90) in the form

2

He =2, (91a)
a
2

HS =%i I (91b)

where I, and I; are integrals depending only on the shape of the charge
distributions.
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The energy corresponding to the dipole solutions may be calculated
from equations (68)-(73) as

H=H!+H? (92)

where
H2=J d*x[H(V$2)*+e*($1A,)°+(V x Ar)’] (93a)
Hg= J Px[3(V ;) +g%(¢;B) +(V X B3)] (93b)

which on integrating the last terms and using equations (46b) and (47b),
respectively, may be written as

H‘Z:J d*x[(V2)’+e*($2A1)’] (94a)

Hg= J d*x[}(Voy) +g*(d1Bs)"] (94b)

Now, looking at the energy (94a) and (94b) along with equations (64)-(67),
we can show the dependence of the energy of the dipole solutions on the
shape, the coupling parameters, the total charge, and the extensions a and
a’ of the respective sources. Using these equations, we can write equations
(94a) and (94b) as

1/1 )

H‘§=; <e—z+% I—j) (95a)
1[I I

Hg =Z (g_;+% I_;:) (95b)

where I, is given by equations (69) and

L=27 Jﬂ sin 0 do mez dx[<w>2+i2 (M)z] (96a)
0 0 ox X 960

mw o0 d
I.=2m J sin 6 do J x—’z‘ F(x, 0)f*(x, 0) (96b)

0 0
while I, I}, and I} are the primed integrals of I,, I,, and I,.
A comparison of equations (95a) and (91a) shows that while the energy

of the magnetic dipole solutions (95a) is linear in Q,, the Coulomb energy
is quadratic in Q,. Similar comparison may be made for the electric dipole
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solutions (95b) and equation (91b). Now, combining equations (91a) and
(95a), we obtain the following equation quadratic in (Q,e):

(Qee)ZIlleg“(Qee)I4H2_I1IsHZ=0 (97a)
Similarly, combining equations (91b) and (95b) yields
(Qee)’I'I}H—(Qug)ILHy— INI5H =0 (97b)
Solving equations (97), we obtain the values for (Q.e) and (Q,g),
(Qee)={LLH:+ [Ii(H2)2+ 41%1213H2HS]1/2}/211I2HS (98a)

(Qu)={I Hgx[I(H Y +4I I, I\ H H]V?Y 2 I,HS  (98b)
Of two values each for (Q.e) and (Q,g), only the positive values are allowed,
so that the energies (95) remain positive definite. It may also be observed
that the values of (Q.e) and (Q,g) change according to the energies of the
Coulomb and dipole solutions. Critical values of (Q.e) and (Q,g) may

therefore be obtained from equations (98a) and (98b), respectively, for
H{=H¢ and for H;= H§, which give

(Q.e) ! IZ+[(12)2+411]1/2 (99a)
L. == —— == = a
e€ ) critical 2 Iz Il I1 342
1 I 15)2 ] 1z
aiical =—— —+| | =) +4IiI, 99b

(Qg8)critical 20 1 I:(I; 3d2 (99b)
further, '

lf Hg < H(e: ’ (Qee) > (Qee)critical (990)

1f H: > HE 3 (Qee) < (Qee)critical (99d)

and similar results for (Q,g) with respect to H§ and Hj. Therefore, it may
be concluded that if

[(Qee)+(Qgg)]> [(Qee)+(Qgg)]Critical (1003)
then
Hé<H® (100b)

where H® and H° are given by equations (92) and (89), respectively. These
equations therefore fix a threshold value for the product of charge and
coupling parameters, above which the energy corresponding to the dipole
solutions would be lower than the energy corresponding to the Coulomb
solutions.

For the gauge group SU(3), similar calculations may be carried out
for the three cases and it may be concluded here also that for sufficiently
large electric and magnetic source strengths the energy of the dipole sol-
utions becomes lower than the energy of the corresponding Coulomb
solutions.
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7. DISCUSSION

Incorporating magnetic sources through a new non-Abelian field tensor
[equation (1)], we have studied the Sikivie-Weiss magnetic dipole solutions
for the gauge groups SU(2) and SU(3). The conclusions of course extend
to higher gauge groups as well. Due to the presence of both electric and
magnetic sources, we have called them dipole solutions. It has been observed
that the field tensor (1) allows the incorporation of magnetic sources on
the lines of the electric sources, expect that due to the negative sign in the
corresponding field equation, the cylindrical symmetry is about the opposite
axes than for the electric sources. The obtained solutions are in fact of three
kinds: Coulomb, totally screened, and partially screened ones. The partially
screened solutions alone have been shown to have the long-range behavior
of dipole fields and their energy has been compared with that of the Coulomb
fields. The comparison leads us to the conclusion that the results of Sikivie
and Weiss remain valid even if we introduce magnetic sources in the theory.
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